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1 Abstract

The surge in AI code generation tools has created an urgent need for standardized
evaluation frameworks to assess detection methods. We introduce AICodeDetect,
a comprehensive evaluation pipeline for AI-generated code detection that spans
multiple programming paradigms and AI models. Our framework establishes
testing protocols across imperative (Java, Python) and functional (OCaml) lan-
guages, incorporating code samples from GPT-3.5Turbo and GPT-4o to enable
systematic comparison of detection approaches. The pipeline implements a pro-
gressive series of architectures: foundational methods (KNN, Neural Networks),
sequence models (LSTM), traditional ML (Decision Trees, SVM), CNN-based
approaches, transformer architectures (CodeBERT), and advanced multimodal
fusion techniques. Through systematic ablation studies, we uncover key insights:
(1) more sophisticated models like GPT-4o produce more detectable patterns
than GPT-3.5Turbo, suggesting distinctive AI signatures rather than improved
human mimicry, (2) detection efficacy varies across programming paradigms,
with robust results in statically-typed languages, and (3) our novel CodeFusion
architecture, which uses dual-stream processing contrastive learning with Vision
Transformers, achieves perfect detection (F1 = 1.00) for GPT-4o code across
all languages. The framework is designed to be extensible, enabling continuous
evaluation as new models and detection methods emerge.

2 Introduction

The rise of AI-driven code generation models, such as OpenAI’s ChatGPT and
Codex, has fundamentally transformed software development while creating un-
precedented challenges in education, software engineering, and cybersecurity. As
these systems generate increasingly sophisticated code across multiple program-
ming languages, the need for robust detection methods has become critical.

Despite the growing importance of AI code detection, the field lacks stan-
dardized evaluation methodologies that span different programming paradigms
and AI model generations. Current detection approaches vary widely, from tradi-
tional machine learning methods treating code as token sequences to transformer-
based models analyzing abstract syntax trees. However, without systematic eval-
uation frameworks, it remains unclear which approaches are most effective across
different languages and scenarios.

To address this gap, we present AICodeDetect, a comprehensive pipeline for
evaluating AI-generated code detection methods. Our framework provides test-
ing protocols across both imperative (Python, Java) and functional (OCaml)
programming paradigms, incorporating code samples from different language
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Fig. 1: Overview of AICodeDetect Pipeline.

model generations (GPT-3.5Turbo, GPT-4o). This modular pipeline enables sys-
tematic evaluation of various detection approaches and provides insights into
their relative strengths and limitations.

The pipeline includes multiple evaluation stages that serve as an ablation
study: First, it establishes results using traditional methods (CNN, SVM) to
process raw code features. Next, it evaluates deep learning and transformer-
based models on the same samples. Finally, it implements our novel CodeFusion
approach, which combines CNN-based code analysis with Vision Transformer
(ViT) processing of code’s visual features. This systematic progression from basic
models to our full CodeFusion architecture allows us to assess the contribution
of each component to detection performance.

Through systematic application of our pipeline, we find that GPT-4o gen-
erated code is consistently more detectable than GPT-3.5Turbo code across all
architectural configurations. More importantly, the ablation results reveal that
while the CNN+SVM method achieves strong performance, the full CodeFusion
architecture significantly improves detection accuracy, achieving perfect detec-
tion (F1 = 1.00) for GPT-4o generated code (Fig 6c). This progressive improve-
ment demonstrates the value of integrating visual features into the detection
pipeline.

Our main contributions include: (1) A modular pipeline architecture for eval-
uating AI code detection methods across multiple programming languages and
AI model generations, (2) A systematic ablation study comparing detection ap-
proaches, from traditional ML methods to our novel CodeFusion architecture,
(3) Empirical insights into detection effectiveness across programming paradigms
and model generations, and (4) Integration of multimodal detection through
CodeFusion, demonstrating how combining visual and textual features enhances
detection performance.
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3 Background

Prior work has explored various approaches to detecting AI-generated code. [7]
conducted a comprehensive evaluation of existing AI code detectors against
5,069 Python solutions from Kaggle and LeetCode, testing 13 different prob-
lem variants with ChatGPT. Their study revealed limitations in current detec-
tion methods. Code stylometry has emerged as a promising detection approach.
[4] achieved strong results distinguishing between GPT-4 and human-authored
CodeChef solutions, with their classifier reaching an F1-score and AUC-ROC of
0.91. Their performance remained robust (0.89) even when excluding easily ma-
nipulated features like whitespace patterns, demonstrating consistent detection
across problem difficulty levels. Similarly, [8] explored both lexical features and
syntactic patterns from Abstract Syntax Trees on the NYU Lost-at-C dataset.
Using standard classifiers on 58 C source files, they achieved accuracy up to 92%
in distinguishing AI from human-generated code. Their study focused on a con-
trolled programming assignment where both human developers and AI models
implemented a shopping list using linked lists in C, providing a standardized ba-
sis for comparison. [5] and [3] have also contributed detection methods for text,
rather than code, further expanding the field’s understanding of distinguishing
features between AI and human-written artifacts. [1] demonstrated that convert-
ing binary files to grayscale images enabled highly accurate malware classification
through visual signatures. Their innovative approach of treating code as images
achieved 98% accuracy in malware family classification, suggesting that visual
representations can capture subtle patterns that traditional feature extraction
might miss. We draw inspiration from this work in our multimodal methodology.

4 Methods

Our detection pipeline consists of three major components: (1) a multi-language
data processing module, (2) a visual representation generator, and (3) a suite of
detection methods that enable systematic ablation studies. Each component is
designed to be modular and extensible for future enhancements.

4.1 Multi-Language Data Processing Module

This module implements three core design principles: language diversity, bal-
anced representation, and real-world applicability. It processes code samples
across Python, Java, and OCaml, deliberately incorporating both high-resource
and low-resource programming languages to evaluate detection across varying
syntax structures and ecosystem maturity levels.

For each programming challenge from CodeNet [10], the module maintains
a balanced composition: five human-written solutions from original repositories
serve as authentic programming methods, complemented by ten AI-generated
solutions (five each from GPT-3.5 Turbo and GPT-4). This distribution enables
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comprehensive analysis across different generation capabilities while maintaining
statistical validity.

To ensure reproducibility, we implemented a standardized protocol using
language-specific prompt templates for AI-generated samples. Our final dataset
comprises approximately 8,000 samples per language. This three-way compari-
son enables thorough evaluation of detection methods across multiple dimensions
of interest, from language-specific performance to cross-generation transfer ca-
pabilities. Our dataset analysis considers metrics such as code density, comment
ratio, whitespace ratio, and line length distribution, as depicted in Figures 4a,
4b, 4c, and 4d.

4.2 Visual Representation Generation

We include visual representations in our benchmark dataset to capture struc-
tural patterns in code organization that may be independent of programming
language or generation model. We transform source code into fixed-dimension vi-
sual representations through binary encoding: code files are tokenized into binary
sequences, mapped to 34×34 dimensional matrices while preserving sequential
order, and zero-padded for uniform dimensionality. The resulting matrices are
rendered as grayscale images, where each cell’s binary value determines its in-
tensity (2).

(a) Human-written code as grayscale. (b) AI-generated code as grayscale.

Fig. 2: Grayscale image representations of human-written and AI-generated code.

4.3 Detection Methods Module

Our detection module implements a systematic evaluation of multiple approaches
for identifying AI-generated code, serving both as an ablation study and a com-
prehensive comparison of detection techniques. Each method is evaluated inde-
pendently while supporting integration into an end-to-end detection pipeline.

Baseline Methods We establish baseline performance using classical machine
learning approaches optimized for code analysis. A K-Nearest Neighbors
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(KNN) classifier evaluates similarity between code samples using TF-IDF vec-
torization, capturing both lexical patterns and keyword distributions charac-
teristic of human and AI-generated code. A Decision Tree learns hierarchical
rules by recursively splitting on the most discriminative code features, providing
an interpretable model that reveals key differences between human and AI code
patterns.

Deep Learning Module Our deep learning approaches capture increasingly
complex code representations. A feed-forward Neural Network learns non-
linear feature combinations from the code’s lexical structure. The CNN archi-
tecture processes code as image data through three convolutional layers with
batch normalization, enabling detection of visual patterns in code formatting
and structure that may distinguish AI generation. A LSTM network with
BERT embeddings models the sequential nature of code, capturing long-range
dependencies and contextual relationships between code elements. We also adapt
CodeBERT, which pre-trains BERT’s architecture specifically for code under-
standing tasks, leveraging its knowledge of programming language syntax and
semantics for detection.

Fusion Module (CodeFusion) We develop fusion approaches that combine
textual and visual code representations to capture complementary features. The
TF-IDF CNN merges statistical text patterns with visual code structure by
combining TF-IDF features with CNN representations, enabling detection of
inconsistencies between code content and formatting. A CNN-SVM hybrid
leverages CNNs for automatic feature extraction from code images, feeding these
learned representations into an SVM for robust classification. Our primary con-
tribution, CodeFusion, processes code through parallel visual and textual path-
ways with contrastive learning to capture both structural and semantic patterns:

Visual Pipeline: Processes input code images x ∈ RH×W×C through patch-based
transformation:

Given an input code image x ∈ RH×W×C , we divide it into fixed-size patches
xp ∈ RN×(P 2·C), where (H,W ) is the image resolution and N = HW/P 2 is the
number of patches:

z0 = [xclass;x
1
pE;x2

pE; ...;xN
p E] + Epos (1)

where E is the patch embedding projection and Epos are learnable position
embeddings.

Textual Pipeline: The BERT-based pipeline processes tokenized input sequences
t = [t1, ..., tn] to generate contextual embeddings:

h = BERT(t) (2)

where h ∈ Rn×d and d is the embedding dimension.
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Fig. 3: Overview of CodeFusion model, showing the visual and textual processing
streams and their fusion through contrastive learning.

Contrastive Fusion We project both modalities into a shared space:

pv = fv(v), pt = ft(h[CLS]) (3)

The model optimizes a combined objective, L = LBCE + λLcont

where LBCE is the binary cross-entropy loss and Lcont is the contrastive loss
computed as:

Lcont = − log
exp(sim(pv, pt)/τ)∑N
i=1 exp(sim(pv, pit)/τ)

(4)

5 Pipeline Evaluation and Analysis

We evaluate our AICodeDetect pipeline through three progressive stages: struc-
tural analysis, visual representation assessment, and comprehensive detection
performance evaluation. Through this systematic evaluation, we demonstrate
how each component of the pipeline contributes to detection performance while
revealing key insights about AI-generated code patterns.

5.1 Stage 1: Structural Analysis Module

Our pipeline’s structural analysis component examines four key metrics that
reveal distinctive patterns between human and AI-generated code. The code
density analysis (Figure 4a) reveals model-specific signatures across languages.
In Java, GPT-3.5Turbo produces lower density code compared to human-written
code, while Python shows higher density in AI-generated samples. GPT-4o gen-
erated code shows more consistent density levels across languages, though these
patterns differ significantly from human baselines.

Comment distribution analysis (Figure 4b) provides the strongest discrimi-
native signal in the pipeline, with human Python code exhibiting substantially
higher comment density, while AI-generated code maintains consistently low
comment ratios across all languages and models. The whitespace pattern analy-
sis (Figure 4c) further identifies model-specific formatting characteristics, where
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Java code from GPT-4o exhibits higher whitespace ratios than human code,
while GPT-3.5Turbo-generated code shows more similar whitespace patterns to
human samples across languages. This suggests that newer models may develop
distinct formatting preferences rather than simply mimicking human patterns.

Line length analysis (Figure 4d) reveals that human-written OCaml code
consistently has longer lines than AI-generated versions, with less pronounced
differences observed in Python and Java. These structural metrics provide fun-
damental signals that inform the pipeline’s detection mechanisms.

(a) Code density across all samples. (b) Comment ratio across all samples.

(c) Whitespace ratio across all samples. (d) Line length distribution.

Fig. 4: Analysis of code structure metrics across all samples. Human-written
Python samples show the highest comment density, reflecting Python’s emphasis
on readability and documentation.

5.2 Stage 2: Visual Analysis Module

The pipeline’s visual analysis component processes code into standardized im-
age representations, enabling detection of spatial and structural patterns that
may not be apparent in textual analysis alone. Image intensity (5) distributions
reveal clear separation between human and GPT-4o code in Java, while OCaml
shows more similar patterns between human and AI code, potentially due to
strict formatting conventions. Python demonstrates intermediate differentiation,
with GPT-4o showing more distinctive patterns than GPT-3.5Turbo. These vi-
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sual signatures provide complementary signals that enhance the pipeline’s fusion
modules.

(a) OCaml GPT-
3.5Turbo

(b) Python GPT-
3.5Turbo

(c) Java GPT-3.5Turbo

(d) OCaml GPT-4o (e) Python GPT-4o (f) Java GPT-4o

Fig. 5: Image intensity analysis across languages and models.

5.3 Stage 3: Detection Performance Evaluation

Cross-Model Performance Analysis Our evaluation framework reveals pro-
gressive improvements across architectural complexity. Traditional methods like
CNN and SVM show notable improvement when detecting GPT-4o code com-
pared to GPT-3.5Turbo, with performance gains of up to 15% in Python. The
baseline CNN achieves F1 scores of 0.92, 0.79, and 0.79 for Java, Python, and
OCaml respectively on GPT-4o code.

CodeBERT demonstrates exceptional capability with particularly high accu-
racy on GPT-4o generated code, achieving perfect detection in Java (F1 = 1.00)
and near-perfect results in Python (F1 = 0.99) and OCaml (F1 = 0.98). On
GPT-3.5Turbo code, CodeBERT maintains strong performance with F1 scores
of 0.98, 0.85, and 0.96 for Java, Python, and OCaml respectively.

Our novel CodeFusion architecture extends these capabilities further, achiev-
ing perfect or near-perfect detection (F1 ≥ 0.99) for GPT-4o code across all
languages, while maintaining competitive performance on GPT-3.5Turbo code
(F1 scores: Java 0.92, Python 0.81, OCaml 0.95). The ROC-AUC scores for
CodeFusion reach 1.00 across all languages for GPT-4o detection.

Language-Specific Analysis The pipeline reveals varying effectiveness across
programming languages. In Java, all advanced methods (CodeBERT and Code-
Fusion) achieve strong performance (F1 ≥ 0.95), suggesting Java’s structured



Benchmarking AI-Generated Code Detection 9

nature provides clear detection signals. Python’s flexibility presents unique chal-
lenges, particularly for GPT-3.5Turbo code, though CodeFusion’s multimodal
architecture demonstrates particular strength here, achieving near-perfect de-
tection for GPT-4o code.

Results in OCaml highlight the importance of capturing both semantic and
structural patterns in functional programming languages. CodeFusion’s perfect
performance on GPT-4 code (F1 = 1.00) compared to CodeBERT’s 0.978 val-
idates the multimodal approach. Traditional methods maintain reasonable per-
formance, with SVM achieving F1 scores above 0.90 across all languages for
GPT-4o detection.

(a) Recall across models. (b) Precision across models.

(c) ROC-AUC across models. (d) F1 Score across models.

Fig. 6: Comparison of model performance metrics. Left: 4o, Right: 3.5Turbo

5.4 Model Evolution Impact Analysis

Our pipeline reveals an unexpected trend in AI code generation evolution: despite
GPT-4o’s more advanced capabilities, its code is consistently more detectable
than GPT-3.5Turbo’s across all languages and detection methods. Traditional
approaches show marked improvement in detecting GPT-4o code, with perfor-
mance gains of 10-15% compared to GPT-3.5Turbo detection. This pattern sug-
gests that as language models become more sophisticated, they may develop
their own distinctive coding patterns rather than simply mimicking human con-
ventions.

The superior performance of CodeFusion on GPT-4o generated code (achiev-
ing F1 ≥ 0.99 across all languages) suggests that multimodal analysis becomes
particularly valuable for newer generation models. This may be because these
models produce more distinctive structural and visual patterns, as evidenced
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by our structural analysis module’s findings on code density and whitespace
distribution.

Quantitative analysis through our pipeline components reveals specific pat-
terns in model evolution:

– Traditional methods (CNN, SVM) show consistent improvement in GPT-4o
detection compared to GPT-3.5Turbo across all languages (average improve-
ment: Java 13%, Python 15%, OCaml 12%)

– Transformer-based methods achieve near-perfect detection rates on GPT-4o
code while showing more variation on GPT-3.5Turbo samples (CodeBERT
F1 difference: Java 0.02, Python 0.14, OCaml 0.02)

– Multimodal fusion approaches demonstrate the most robust performance
across both model generations, with CodeFusion maintaining F1 scores above
0.90 for most language-model combinations

These findings highlight the importance of evolving detection strategies along-
side generation capabilities, potentially focusing more on characteristic patterns
that emerge from advanced models rather than deviations from human con-
ventions. The pipeline’s modular design enables continuous adaptation to these
evolving patterns while maintaining systematic evaluation capabilities.

Model Java 4o Python 4o OCaml 4o
F1 ROC F1 ROC F1 ROC

CodeFusion 1.00 1.00 1.00 1.00 0.98 1.00
CodeBERT 1.00 1.00 0.99 0.99 0.98 0.99
Contrastive BERT CNN 1.00 1.00 1.00 1.00 0.98 1.00
TFID-CNN 1.00 1.00 0.91 0.99 0.97 1.00
SVM 0.96 0.99 0.93 0.98 0.96 0.99
LSTM 0.94 0.97 0.92 0.98 0.97 0.99
Decision Tree 0.94 0.94 0.91 0.92 0.94 0.93
Neural Network 0.83 0.90 0.89 0.89 0.84 0.86
KNN 0.83 0.81 0.84 0.91 0.85 0.92
CNN 0.92 0.98 0.79 0.88 0.79 0.89
CNN SVM 0.86 0.92 0.75 0.83 0.76 0.82

Table 1: Model 4o Results

6 Discussion

Our pipeline evaluation demonstrates immediate practical applications across
software development contexts, from automated code review systems to edu-
cational institutions assessing student submissions. The modular nature of our
framework enables adaptation to language-specific characteristics while main-
taining consistent evaluation protocols.

The structural analysis module reveals key insights into why GPT-4o code
is more consistently detectable than GPT-3.5Turbo across our pipeline stages.
While GPT-3.5Turbo exhibits variable patterns, GPT-4o shows pronounced and
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Model Java 3.5 Python 3.5 OCaml 3.5
F1 ROC F1 ROC F1 ROC

CodeFusion 0.92 0.98 0.81 0.91 0.95 0.99
CodeBERT 0.98 1.00 0.85 0.94 0.96 0.99
Contrastive BERT CNN 0.91 0.97 0.81 0.90 0.94 0.99
TFID-CNN 0.90 0.97 0.81 0.89 0.90 0.96
SVM 0.93 0.98 0.84 0.93 0.91 0.96
LSTM 0.90 0.96 0.81 0.90 0.92 0.97
Decision Tree 0.90 0.90 0.76 0.77 0.86 0.86
Neural Network 0.70 0.81 0.81 0.80 0.91 0.92
KNN 0.83 0.90 0.67 0.85 0.85 0.91
CNN 0.92 0.98 0.66 0.75 0.76 0.82
CNN SVM 0.88 0.94 0.66 0.72 0.72 0.80

Table 2: Model 3.5 Turbo Results

consistent deviations from human code: near-zero comment ratios across all lan-
guages (Figure 4b), distinctive whitespace distributions particularly in Java (Fig-
ure 4c), and consistent line length patterns. These systematic differences suggest
GPT-4o has developed its own consistent coding style rather than mimicking hu-
man patterns.

6.1 Architectural Performance Analysis

Our pipeline’s progressive evaluation of detection architectures reveals distinct
performance patterns. Traditional methods establish baseline performance lev-
els, while transformer-based approaches like CodeBERT achieve substantially
stronger results, particularly on GPT-4o code. The pipeline demonstrates that
static languages like Java consistently yield higher detection rates (F1 > 0.97)
compared to dynamic languages like Python (F1 ≈ 0.85).

The CodeFusion architecture (Fig 3) leverages contrastive learning to align
visual code structure with semantic understanding, helping identify discrepancies
that often characterize AI-generated code. The dual-stream approach preserves
modality-specific features while ensuring their complementary signals contribute
to the final detection decision.

The complete CodeFusion architecture, which integrates all pipeline compo-
nents including structural and visual features, achieves near-perfect detection
(F1 > 0.99) of GPT-4o code across all languages. This progression in perfor-
mance through our pipeline stages demonstrates the value of combining multiple
analysis modalities.

6.2 Model Evolution Insights

A key finding from our pipeline evaluation is that GPT-4o’s output is more con-
sistently detectable than GPT-3.5’s across all languages and detection methods,
with the gap particularly pronounced in Python (F1 improvement > 0.15). This
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reveals an unexpected trend in language model evolution: as models become
more sophisticated, they may optimize for internal consistency and efficiency
rather than human mimicry.

Current language models are initially trained to imitate human code through
techniques like RLHF, but our pipeline analysis suggests they may optimize be-
yond simple mimicry as they advance. This evolution toward distinctive AI pat-
terns, rather than closer human imitation, could reflect these systems developing
their own efficient approaches through reinforcement learning over long trajecto-
ries. Such a trend has significant implications for detection strategies, as future
detection systems may need to focus on identifying model-specific patterns rather
than deviations from human code. It also improves our understanding of AI ca-
pabilities: models may develop novel coding approaches that prioritize efficiency
over human-like characteristics. It also lays the foundation for future frameworks,
which must maintain flexibility to adapt to evolving AI coding patterns.
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